Current Lab Members

Martyn Goulding, Prof. : Principal Investigator

Martyn Goulding, Prof.

Principal Investigator

Tomoko “Tommie” Velasquez : Lab Manager

Tomoko “Tommie” Velasquez

Lab Manager

David Acton, PhD : Postdoc

David Acton, PhD


Antoine Dalet, PhD : Postdoc

Antoine Dalet, PhD


Here at the Salk Institute, my work is mainly focused on the dorsal horn of the mammalian spinal cord which is an essential component of the motor and somatosensory systems. Using cutting edge techniques notably in vivo calcium imaging, optogenetics and genetic intersectional approach, I am aiming to uncover the structure and function of particular sensory networks. This work may help to further understand pathological conditions such as chronic pain and itch.

Stephanie Koch, PhD : Postdoc

Stephanie Koch, PhD


I received my Masters in Pharmacy from the University of Bath, and completed my MSc and PhD at UCL in London, UK.
I am combining genetics, in vivo electrophysiology, molecular biology and targeted tracing techniques in order to understand how the sensation of touch is integrated within the spinal dorsal horn, and thus how touch can be perceived as painful in pathological situations.

Graziana Gatto, PhD : Postdoc

Graziana Gatto, PhD


I graduated from the University of Naples in 2006 with a Masters degree in Medical Biotechnology. During my research project I characterized the molecular mechanisms by which the Epstein-Barr virus induces microRNA expression. I then moved to the Max Planck Institute of Neurobiology in Munich where I obtained my PhD in September 2013. In the laboratory of Rüdiger Klein, I studied how the modulation of Eph/ephrin and neurotrophic factor signaling regulates motor and sensory neuron guidance. I joined Martyn's lab in September 2014 to study the role of dorsal spinal interneurons in shaping the motor response to aversive stimuli. In particular, by combining genetic, optogenetic and pharmacological approaches I would like to functionally and molecularly characterize the different subclasses of dorsal interneurons involved in processing withdrawal reflex and itching behaviors.

Stefania Di Costanzo : Grad Student

Stefania Di Costanzo

Grad Student

I graduated in 2012 from the University of Naples in Medical Biotechnology where my research was focused on the signaling pathways involved in non small cell lung cancer. The following two years I was a research assistant first at Harvard Medical School in the Walsh lab and then at the George Washington University in the Manzini lab working on the functional characterization of genes involved in intellectual disabilities and muscular dystrophies. I was accepted at UCSD in the Biological Sciences program in 2014 and started my PhD work in the Goulding lab in June 2015. My PhD project is focused on unveiling the functional organization of the inhibitory circuits that shape the locomotor system. Using a combination of intersectional genetics and viral tools, I am characterizing the diversity and connectivity of specific populations of inhibitory interneurons in the ventral horn that are important to establish speed, pattern and rhythm of movement.

Xiangyu Ren : Grad Student

Xiangyu Ren

Grad Student

I graduated from Zhejiang University, China in 2014. Now I am a PhD student in the Biology graduate program of UCSD. The spinal cord is the first relay station of the central nervous system to process somatosensory and motor input from the external world. It has been shown that neurons in the spinal dorsal horn form different modalities to selectively receive and transmit various types of sensory and motor information. (Bourane et al. Cell 2015; Duan et al. Cell 2014) Here, in the Goulding lab, I am really interested in looking for new specific neuronal markers which can be correlated to specific types of sensory and motor behaviors. Using intersectional genetic methods, along with histology, behavior tests and retrograde tracing, I try to characterize excitatory and inhibitory neuronal populations, and dissect intricate neural circuitries in dorsal horn of spinal cord.